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On the growth of waves in boundary layers:
a non-parallel correction
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The estimation of the growth of propagating instability waves in laminar boundary
layers is considered when the Reynolds number is sufficiently large for the mean
flow to deviate only slightly from a truly parallel flow. An approximate solution
for the linear perturbation is sought in the form of a scaled solution of the related
locally parallel flow problem. The amplitude scaling is chosen so as to satisfy the full
linearized perturbation equations as closely as possible by making the mean-square
deviation of the remainder a minimum. By re-arranging the terms in the equations so
that some of the small correction terms arising from the non-parallel mean flow are
contained in the ordinary differential equation (ODE) defining the quasi-parallel flow
solution, a useful simplification is obtained for the scaling function. Then a modified
Orr–Sommerfeld equation defines the base solution and the differential expression for
the scaling that can be integrated forms a simple conservation relation.

1. Introduction
The study of the instabilities of laminar flows and the determination of how weak

disturbances can grow into turbulence has been an on-going topic for over one
hundred years. Much of the early mystery and conjecture has been removed from
the subject through the enormous amount of research that has been carried out,
resulting in a reasonably clear picture of the underlying physical processes that take
place. There are, nevertheless, still interesting and unresolved aspects of the transition
process worthy of further study. Much of the early work concentrated on the problem
of predicting whether or not infinitesimal disturbances would grow or decay, hence
defining the flow’s stability. The framework for much of this research was put in
place by Reynolds (1883) and Rayleigh (1880). Rayleigh made significant progress in
explaining the instabilities of certain simple parallel base flows by ignoring the effects
of viscosity, assuming that the inclusion of viscosity would only act as a stabilizing
influence. It turns out that the role of viscosity in generating the stresses required
for instability is quite subtle and this was not properly understood until Prandtl (see
Durand 1932, vol. III) gave a clear explanation showing how the wall-induced phase
variations of the eigenfunction created the required Reynolds stress for energy transfer
from the mean to the perturbation. Solution of even the simplest flow that included
the viscous terms in the governing equation was difficult and only geometries that
enabled the linearized equations to separate and reduce to ODEs could be tackled.
Even then the extraction of the eigenvalues defining stability was a formidable task.
Heisenberg (see Lin 1955) employed great ingenuity in formulating the asymptotic
solutions for large Reynolds numbers of the Orr–Sommerfeld equation for the case
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of plane channel flow to obtain estimates of the lower branch of the basic instability.
The more interesting problem of determining the stability of boundary layers was
only tackled later by students and colleagues of Prandtl.

The boundary layer is more amenable to experimental exploration than the parallel
flow in a channel. The developing study of the aerodynamics of wings was being
studied in wind tunnels in various laboratories around the world and it was clearly
important to make boundary layer stability predictions for these technologically
important flows. The approach used by Tollmien (1929) and Schlichting (1933) was
to treat the boundary layer as a ‘locally parallel flow’ with a streamwise velocity
profile of the boundary layer at various downstream locations on the aerofoil or
plate. Boundary layer growth at the Reynolds numbers where transition occurs is
generally weak and the neglect of various small terms in the perturbation equations
that prevented reduction to ODEs did not appear to be too severe. The resulting
‘parallel-flow’ approximation enabled the partial differential equation describing the
wavy disturbance to be reduced to an ODE by taking Fourier transforms in the
streamwise coordinate, albeit with slowly varying parameters. The task of finding
eigenvalues using the methods then available was sufficiently daunting itself without
considering any errors introduced by treating the mean flow as parallel. It is to
Schlichting’s credit that the solutions that he obtained were close to the accurate
ones that can now easily be found using a digital computer. The predictions of the
amplifications of oscillatory perturbations were defined in the form of integrals of
these local solutions evaluated on the basis of a purely parallel mean flow.

The effect of applying the so-called ‘parallel-flow’ approximation that neglected
the small terms in the perturbation equations was estimated by Pretsch (1941) who
considered the relative magnitudes of the various terms in the full linearized equa-
tions. He concluded that the terms ignored were all at least of order R−1/2 smaller
than those retained in the parallel flow solution, where R is the local displacement
Reynolds number of the boundary layer. He therefore assumed that such weak terms
would only have a marginal effect on the solution. It is worth recalling that at that
time there was no experimental evidence that the findings of Schlichting had any rel-
evance to transition in boundary layers. Taylor (1939) went so far as to question the
very existence of Tollmien–Schlichting waves. Only after the remarkable experiments
of Schubauer & Skramstad (1948) was there general acceptance of the idea that the
predicted instabilities really did occur and that the amplification of small disturbances
could lead through transition to a turbulent boundary layer. The confirmation of the
theoretical predictions by these experiments was so remarkable that the underlying
assumptions in the theoretical model were not really questioned. For example, the
theory was a stability theory involving disturbances that evolved in time whereas
the observations made in the wind tunnel were of spatially growing waves. Although
Schlichting (1935) did use the group velocity to link the expected physical growth
to the instability calculated, there appeared to be no real understanding of the link,
nor was this formulation generally used to calculate amplification factors. Also the
parallel-flow approximation was used to define the local growths without understand-
ing the fact that there was no way of properly coupling the solutions at neighbouring
streamwise steps. Despite these questions, comparisons between predictions and ob-
servations were on the whole acceptable. The theory provided a description of wave
growth that was not grossly in error and it could usefully be used in many flows
of practical interest. The theory was also good enough to use in simple schemes for
transition prediction that were based on the linear amplification of different wave
modes. Calculations of the amplification showed that transition often occurred when
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the most amplified wave grew by roughly e9. This empirical growth factor provided
a relatively simple way of estimating the most likely transition region. Such schemes,
even with all their shortcomings, are currently used in industry today.

There were, however, small differences in the predictions of the lowest critical
Reynolds numbers for the existence of unstable waves and the early observations made
on a flat plate in a wind tunnel. The differences between the calculated eigenvalues and
those obtained experimentally by Schubauer were easily accepted at the time because
of the difficulties both of making the necessary measurements and of evaluating
the eigenvalues. Since then accurate numerical solutions of the Orr–Sommerfeld
equation have been obtained and also new measurements have been made (Ross
et al. 1970), but these efforts have not resolved the problem. Comparisons of the
amplification rates within the neutral loop were generally more acceptable than
the location of points on the neutral loop. The amplification of the two-dimensional
waves from the early experiments only enabled comparisons to be made over relatively
short distances before the amplitudes became so large that nonlinear factors arose.
Accurate experimental measurements are very difficult to carry out at such low
Reynolds number. The theory describes the growth of a single linear eigensolution,
whereas in an experiment it is impossible to avoid the excitation of other modes as
well. Although these higher modes are all damped they will nevertheless inevitably
contaminate the data to some degree and make it difficult accurately to locate the
neutral amplification points. There are also difficulties in creating the perfect Blasius
boundary layer flow in the laboratory in which to carry out the experiments.

In some work involving wavepackets significant discrepancies appeared between the
amplifications observed and values calculated using the parallel-flow model (Gaster
1975). The amplitudes within an impulsively driven wavepacket grow much more
slowly than an isolated two-dimensional mode because of the streamwise and spanwise
spreading of the wave envelope. This means that experimental data can be obtained
over vast streamwise distances involving the growth of the boundary layer thickness
by a factor two or more. Under these circumstances it was perhaps less surprising
that the observed behaviour was not well predicted by the quasi-parallel eigenvalues.
At the time there was no theory available to take proper account of the influence
of boundary layer development on wave growth and an ad hoc correction for the
boundary layer growth based on energy transfer and dissipation was formulated. This
crude scaling idea was not well received. It was clear that the problem of estimating
the influence of boundary layer development on wave growth needed to be tackled.

Barry & Ross (1970) considered the influence of the neglected terms in the per-
turbation equations. The full perturbation equation contains small terms that have
streamwise spatial variation and this prevents reduction to an ODE by Fourier
transformation. By only including those terms of order 1/R1/2 that did not contain
streamwise derivatives an ODE similar to the Orr–Sommerfeld equation was cre-
ated. The terms included in this modified O–S equation arose through the normal
component of the mean velocity that is equated to zero in the strictly parallel flow
formulation. The calculations using this formulation certainly shifted the neutral
loop towards the experimental data. It was argued that the residual terms, although
strictly of similar order to those retained, were in numerical terms small because of
the eigenfunction normalization used. Although this argument is incorrect, because
at this level of approximation there are other terms missed out that also depend on
the normalization, the modified O–S equation certainly appeared to produce stability
criteria that were closer to the true non-parallel values than those given by solutions
of the unmodified governing equation.
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Because the quasi-parallel Orr–Sommerfeld approach gave results not too far
removed from experiment, it seemed reasonable to expand the full linearized per-
turbation equations around that basic state and seek a correction term to account
for weak boundary layer growth (Gaster 1974). The formulation used an iterative
approach to create a series of correcting terms to this basic solution derived from
an ODE. It was clear that some scaling of the trial solution was also needed to
account for the growth of the boundary layer thickness with distance downstream,
but additional terms in an expansion scheme also needed to be included. The ordering
of terms involved not only the transparent scaling that arose when any term contained
derivatives with respect to streamwise distance, but also any additional ordering that
involved knowledge of the solution structure normal to the boundary. For reasons
that are no longer obvious the ordering from the structure at the critical layer was
ignored, although more recently this has been shown to be important (Govindarajan
& Narasimha 1999). The use of the adjoint function of the O–S equation enabled the
amplitude scaling to be determined in terms of integrals through the boundary layer
involving terms formed from products of the eigenfunction and the adjoint function.
The amplification of any measurable quantity was thus defined to order 1/R1/2 in
terms of the eigenvalue of the O–S equation, an amplitude scaling and a term arising
from the variation of eigenfunction with downstream distance. The neutral loop,
evaluated for the appropriate experimentally measured quantity, was certainly shifted
towards the experimental data, but did not fit the measurements convincingly.

Before Gaster (1974) was published two papers by Bouthier (1972, 1973) appeared.
He used a multiple-scale approach and directly obtained the equations for the
amplitude scaling function. He ordered the terms purely on the basis of the streamwise
behaviour and had to artificially separate the terms arising directly from the mean flow
divergence and those from the O–S equation. The apparent inconsistency of including
a high-order viscous term in the basic O–S equation can readily be justified if the
ordering is additionally based on the internal structure, as would be done in triple-deck
asymptotics. Unfortunately the computed behaviour was not interpreted correctly and
did not reflect the quantities that one would measure in an experiment. The papers
were, nonetheless, the first ones published that developed a mathematical theory for
the prediction of the growth of instability waves in a developing boundary layer.

Nayfeh, Saric & Mook (1974) and Saric & Nayfeh (1975) also used a multiple
scale approach to obtain estimates of wave growth in developing boundary layers.
They obtained a correction to the amplification rates in terms of integrals of base
solutions and adjoint functions identical to the form obtained by Bouthier and by
Gaster. In their approach the eigenfunction variation with downstream distance was
ignored in the prediction of amplification rates because their calculations showed
that these factors were numerically small compared with those retained. The relative
magnitude of the terms defining amplification of a physical quantity depends on the
choice of normalization, but the final result from all the terms must be independent
of the normalization. It is therefore quite incorrect to ignore certain terms because
in the particular normalization used they are numerically small. The neutral stability
loop that was obtained by Saric & Nayfeh fell virtually on top of all the existing
experimental data. No mention was made of the fact that different physical quantities
amplify at slightly different rates, presumably because in their calculation scheme
these factors also appeared to be weak. This result is generally quoted in text books
as an illustration of the power of the non-parallel theory in predicting boundary
layer stability that is consistent with the observations. It is now known to be a
fortuitous result arising from a numerical error in the computer codes. This spurious
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correlation will, no doubt, continue to be quoted in review articles and books because
the agreement with experiment is so convincing.

A study by van Stijn & van de Vooren (1982) using somewhat different numerical
methods completely supported the results of Gaster (1974).

All the multiple scale schemes are somewhat similar and although there are subtle
variations in the methods used all the solutions derived consist of a scaled quasi-
parallel solution together with a series of correction terms. The scaling function is
formed by using the adjoint operator to form a solvability integral. The series of
terms appear in inverse powers of the Reynolds number and constitute an asymptotic
form of solution that provides insight into the solution at infinite Reynolds number.
It can be argued that there is no point in using the locally parallel flow solution
as the starting term of the series and that one might just as well use a triple-deck
approach to form the direct asymptotic solution to the full equations of motion as
has been done by Smith (1979). At infinite Reynolds numbers this is certainly true,
but at the finite Reynolds numbers of interest in experiments the predictions made by
triple-deck theory are not very good. It seems, therefore, better to attempt to correct
a reasonably good approximate solution based on the quasi-parallel approach than
to attempt a solution to the full problem ab initio using triple-deck methods.

Fasel & Konzlemann (1990) tackled the problem of wave growth prediction in a
boundary layer directly by numerical means. They computed the spatial evolution of
a wavetrain initiated at some upstream station in a Blasius boundary layer. The flow
field data obtained were contaminated by higher eigensolution just as in experiments
and had to be processed in much the same way to produce the relevant growth
rates. The neutral loop obtained confirmed the calculations of Gaster (1974) whilst
disagreeing with the existing experimental measurements.

An attempt to resolve this problem by carrying out more precise experiments was
made by Klingmann et al. (1993). They showed that small deviations from the Blasius
mean flow could easily arise on a simple flat plate with an elliptic nose that were
sufficient to explain the discrepancies between the predictions and the measurements.
By modifying the nose geometry to achieve a good mean flow they found wave growth
values that were in excellent agreement with Gaster (1974).

Govindarajan & Narasimha (1995, 1997, 1999) re-examined the formation of
approximate predictions of wave growth in boundary layers in a series of papers.
They use a somewhat different coordinate system that certainly appears to simplify
the equations and helps to clarify the terms neglected in the different approximations
that have been made. In the first paper (1995) the formulation of the differential
equations is essentially equivalent to those of Gaster, Bouthier, Nayfeh & Saric etc.,
but the method of solution is different. They argue that the small slowly varying
right-hand side to the ODE contains a controlling parameter based on Reynolds
number, and that the solution of the full system can be accomplished by including
the residual inhomogeneous element in an iterative manner. In this way they not
only obtain a solution containing the effects of non-parallelism found previously, but
also include the contribution from the particular integral that is normally neglected.
This is generally done to avoid considerable extra computation of an inhomogeneous
problem, but also because the additional terms can be shown to be small and would
naturally come in at the next term of the expansion. The iterative scheme that is
used certainly appears to work in this instance, but such methods can be slow to
converge down to machine accuracy, or may even fail to reach a solution in some
cases. However, with care it appears that amplification rates can be evaluated with
sufficient accuracy for all practical purposes by this scheme. They have also calcu-
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lated amplification rates for pressure-gradient boundary layers of the Falkner–Skan
family of flows. Govindarajan & Narasimha (1997) noted some small differences with
Gaster (1974) that they attribute to the neglect of the particular integral element of
the solution by Gaster referred to above.

More recently Govindarajan & Narasimha (1999) have critically examined the
magnitudes of the terms in the governing equation and obtained a consistent lowest-
order ODE. It was argued that this would provide approximate solutions accounting
for the spatial boundary layer growth at large Reynolds numbers. Any scheme that
ignores the coupling between solutions at different streamwise locations means that
the overall solution is unspecified to some degree, as in the quasi-parallel method. The
local solutions will be modified by the additional terms, and presumably this affects
the eigenvalues obtained, but it is not clear to what extent the integrated result will
be improved. The results obtained by such a method will be dependent on the type of
normalization used in evaluating the eigenfunctions. It seems, therefore, inconsistent
to calculate the spatial growth of any specific quantity such a velocity at the inner
maximum, because the result would be incomplete and unspecified to some extent.
The eigenvalue is, however, unaffected by normalization and does indeed provide a
consistent measure of some overall amplification.

2. Approach
The present approach seeks a method of estimating wave growth in developing

laminar boundary layers at the finite values of Reynolds number that occur in the
laboratory or on aircraft wings. It seems to be appropriate to again base the solution
on some small modification of an easily formed approximate solution generated by
a suitable ODE. In the previous methods discussed a series of correction terms of
diminishing magnitude were in principle generated, although no more that the leading
term was calculated. The amplification of a given mode was then determined to order
1/R1/2 from some solvability condition, whereas the actual solution, as far as the
measurable velocity fluctuations are concerned, was only obtained to zeroth order.
These methods concentrate on correcting the integrated amplification of the dominant
eigenmode whilst ignoring the weak scattering of higher modes and the continuous
spectrum that must contaminate the overall solution to order 1/R1/2. At this level
the correction from the locally parallel form of solution arises solely in the form of
an amplitude scaling as a function of streamwise location. This scaling is required to
enable the quasi-parallel local solutions to be properly coupled.

Instead of using adjoint operators to obtain the amplitude scaling function, here an
amplification parameter that gives the best fit to the linearized equations of motion at
each downstream location will be chosen. This will enable a solution to be found that
satisfies the full equations of motion, including the inhomogeneous terms that were
ignored in the adjoint approach, as closely as possible in a mean-square sense. The
solution will consist of a base term, generated by an ODE at each streamwise station,
modified by some amplitude scaling function so that the magnitude of the residual
terms in the equation are minimized. No additional correction terms are sought.

The following constraints are to be imposed on the solution:
(i) The initial level of approximation will be obtained by a solving an ordinary

differential equation formed from the linearized Navier–Stokes equations.
(ii) Corrections are sought that minimize, in a mean-square sense, the terms

neglected in the governing equation. Because the streamwise development of the
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mean flow is weak and the scaling correction factor, A(ξ), is slowly varying higher
derivatives will be ignored as well as products of first derivatives in ξ.

(iii) The current work focuses solely on the zero-pressure-gradient Blasius base
flow, but there should be no difficulty in extending the scheme to more general
situations, or to three-dimensional disturbances.

3. Analysis
The x and y coordinates are in the stream and normal directions respectively. A

modal disturbance is deemed to exist at a distance xo from the leading edge and the
development of that disturbance is sought downstream. It is convenient at this stage
to use the boundary layer coordinates (ξ, η) and the normalizations used in Gaster
(1974):

ξ =
x

x0

, η = y

(
U

νx

)1/2

. (1)

U is the free-stream velocity, ν the viscosity and the Reynolds number at x0 is
R = Ux0/ν. Then

η =
U

ν

y

R1/2 ξ1/2
. (2)

The mean-flow streamfunction is defined by

ψ = νξ1/2R1/2f(η), (3)

where for the flat-plate Blasius boundary layer f(η) is given by

f′′′ + 1
2
ff′′ = 0. (4)

An initial wavy disturbance of frequency Ω exists at x0.

$ =
Ω l0

U
. (5)

It is convenient to use a length scale l =
√

(xν/U) that does not involve any numerical
factors. Final results will be scaled in the conventional manner using displacement
thickness. l0 is the length scale at x0 and $ is therefore a constant.

A solution of the perturbation streamfunction of the linearized Navier–Stokes
equation is now sought in the form

A(ξ)ψ(ξ, η, t), (6)

where A(ξ) is the amplitude scaling needed to cater approximately for the development
of the boundary layer and ψ(ξ, η, t) is the perturbation streamfunction given by a
solution of the local parallel flow perturbation defined by the O–S, or some other
related ODE.

Using the non-dimensional parameters appropriate to the boundary layer the quasi-
parallel flow solution can be written as

ψ = φ(ξ, η) eiQ, (7)

where

Q = R1/2

∫ ξ

1

α(ξ)

ξ1/2
dξ − $t. (8)
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On substituting into the linearized Navier–Stokes equation, ignoring terms that are
quadratic or higher in ∂/∂ξ we get

ODE [φ] = F0 + G× F1, (9)

where

G =
ξ

A(ξ)

dA(ξ)

dξ
(10)

and F0 and F1 contain the remaining terms that do not satisfy the ODE. The terms
on the right-hand side are small compared with those on the left-hand side by a
factor of magnitude 1/R1/2. We have an unknown amplitude scaling factor A(ξ) that
can be chosen so that the right-hand side is made as small as possible at all values
of ξ. The overall solution will then provide a best fit to the full equations. Define a
quantity, say E, that is an integral of the modulus of the right-hand side squared,

E =

∫
|F0 + G× F1|2 dη. (11)

Differentiating with respect to G and equating to zero gives

G̃best = −

∫
F1F̃0 dη∫
F1F̃1 dη

. (12)

This value of G will provide an overall solution that fits the perturbation equations
as closely as possible. The ODE used for the basic solution can be the Orr–Sommerfeld
equation, or a modified version of it. The above solution and evaluation of the
amplitude scaling is quite general and can be expected to provide approximate
predictions of the downstream disturbance behaviour in a developing boundary layer.
The solution is the best fit that one can obtain with the constraints imposed. There
are, however, further simplifications that can be made if the main concern is the
determination of the real part of G that controls the correction to the amplification
rate. It turns out that by moving some of elements in F0 across to the left-hand side
of the equation to create a modified version of the Orr–Sommerfeld equation a more
tractable form of scaling integral relation is created. This manoeuvre will simplify the
subsequence analysis without any loss of precision. The modified equation is

(αf′ − $ξ1/2)(φ′′ − α2φ)− αf′′′φ+
i

R1/2 ξ1/2

{
(φ′′′′ − 2α2φ′′ + α4φ)

−
[
($ξ1/2 − 3αf′)

(
ξ dα

dξ
+
α

2

)
+ α$ξ1/2

]
φ

+ (α$ξ1/2η − α2ηf′ − 1
2
α2f + 1

2
f′′)φ′ + f′φ′′′ + 1

2
fφ′′′

}
= 0. (13)

And F0new and F1 are

F0new = (2α$ξ1/2 − 3α2f′ − f′′′)ξ∂φ
∂ξ

+ f′
ξ∂φ′′

∂ξ
+

[
(2$ξ1/2 − 6αf′)

ξ dα

dξ
+ α$ξ1/2

]
φ,

(14a)

F1 = (2α$ξ1/2 − 3α2f′ − f′′′)φ+ f′φ′′. (14b)
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Figure 1. Neutral amplification plots: A, parallel flow approximation; B, adjoint method;
C, current scheme.

And therefore

F0new =
ξ∂F1

∂ξ
. (15)

With these modified equations

Greal = −
ξ

d

dξ

∫
|F1|2 dη

2

∫
|F1|2 dη

. (16)

This can be integrated with respect to ξ to provide an expression for the amplitude
scaling of the solution of the ODE to account for boundary layer development with
downstream distance:

A2
real =

1∫
|F1|2 dη.

(17)

At any specified distance from the boundary the streamwise amplification of a
measurable velocity component is then(

ξ du

u dξ

)
real

= −ξ1/2 R1/2 αi + Greal +

(
ξ dφ′

φ′ dξ

)
real

− 1
2
. (18)

4. Calculation
Equation (13) was solved by a shooting method using a simple purification scheme

to prevent the divergent root from contaminating the result. This equation is more
complex than the Orr–Sommerfeld equation because of the term involving the deriva-
tive of wavenumber with downstream position. By carrying out two simultaneous
evaluations for close streamwise locations the term can be incorporated in the
solution. This term is quite small and had only a minor influence on the final
result; nevertheless its presence affected the convergence slightly as discussed in the
introduction. The resulting neutral loop is shown on figure 1 together with that arising
from the adjoint scheme.
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5. Discussion
The adjoint method of solution generates a series of terms in inverse powers of R1/2,

where the Reynolds number is taken to be large. The leading term of this expansion
is provided by an amplitude scaling as a function of streamwise distance multiplied
by the solutions given by local parallel-flow predictions from the Orr–Sommerfeld
equation. At infinite Reynolds number the leading term is dominant, and unless the
series of terms has some unexpected problem it will also describe the wave behaviour
at the large finite Reynolds numbers that are encountered in transition studies. The
leading term satisfies the full linearized equations to order R−1/2. Higher terms of
the series absorb the remainder terms ignored in previous evaluations. Therefore,
provided the series behaves reasonably, prediction could be made by summing the
series. It turns out that for most boundary layer work it is only necessary to use the
leading term to make predictions of wave growth with good accuracy. The present
approach accepts the fact that only one term is required to adequately describe
the wave evolution in a growing boundary layer and again considers a solution in
the form of a scaled quasi-parallel flow prediction. But here the scaling function is
determined so that the approximate solution satisfies the full linearized equations
as closely as possible. This solution will locally fit the equations more closely than
the leading term of the series produced by the adjoint method. If estimates of wave
growth are required over large distances it may be that the adjoint methods will
give more accurate results, but if the amplification part is small it may be that the
present approach is more appropriate. The simplification made by re-arranging terms
so that the modulus of the scaling equation can be integrated exactly is particularly
helpful. Not only does this provide a conservation function, that one might intuitively
have expected to occur in this type of problem, but it makes the calculation of wave
amplification more straightforward.

The final form of approximation implies some conservation law to define the
scaling, but the quantity being conserved here does not appear to be an obvious one.
The growth of any physical quantity requires the calculation of the terms in (14b).
The only quantity that can be given by an ODE without scaling is

∫ |F
1
|2 dη, but this

does not appear to be linked to any measurable quantity nor is it a useful parameter
in transition prediction.

The three neutral loops on figure 1 show that although the new method makes some
corrections in the direction of the adjoint method the predictions are not precisely the
same as one another. The method may, nevertheless, be a useful way of estimating
non-parallel effects.

6. Conclusions
The present formulation provides a method of obtaining approximate solutions

of a linear disturbance wave travelling downstream in a developing boundary layer.
The method requires the solution of an ODE to obtain the eigenvalue and the
eigenfunction at various streamwise locations. The scaling normalization is then
given by an integral through the boundary layer of a simple function defined in terms
of the eigensolutions. This is essentially much simpler to implement than methods
that also require the adjoint function. The integral scaling enables growth corrections
to be made between stations far apart without having to evaluate the corrections at
all intermediate locations.

I wish to acknowledge the encouragement given to me by the late David Crighton
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to pursue this idea for treating the effects of non-parallelism. I also want to thank
Professor Roddam Narasimha for a very helpful discussion and I also thank a referee
for pointing out some mistakes in the original version of the paper.
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